ForcePAD – A New User Interface Metaphore for 2D Finite Element Modeling

J. Lindemann and G. Sandberg

Division of Structural Mechanics
Lund University
Introduction

- First version developed in 2001
- Developed as a educational tool for understanding shape and force relationships
- Used continuously in courses for architect, design and engineering students
- ForcePAD targets
 - Designers, architects and people without knowledge of material, shape and force relationships.
 - Engineering graduate students as a tool for enhancing their understanding of basic mechanical concepts
A short history

- ForcePAD 1.0.5
 - Painting stiffness on element grid
- ForcePAD 2.0.x – 2.2.x
 - Introduced Image based modeling
- ForcePAD 2.3 –
 - Task oriented
 - New boundary conditions
 - Action mode with real-time updates
Why ForcePAD?

- There was a need for a tool, explaining the basic relationships in mechanics.
- Standard FE Software **too complicated**
 - Geometry modelling
 - Load cases
 - Must have knowledge to use
- ... **too many features**
 - Often designed to be general
 - Solve many types of problems
What is ForcePAD?

- 2D finite element model - Plane stress
- Image based geometry modeling
 - Uses the same user interface metaphores as in image editing software (Paintbrush, Photoshop etc...)
- Stiffness represented as a grayscale
 - White = no stiffness
 - Black = full stiffness
What is ForcePAD?

Pixel image

FE-grid
How do we create an easy to use user interface for 2D FE modeling?
Reducing user interface complexity

- Most evolving applications adds features
 - Users want features => more icons/menus
 - Application becomes complex
 - Donald Normal calls this “creeping featurism”
- Even simple FE user interfaces has to handle many features
- Solutions:
 - Avoidance and restrain (not always possible)
 - Organisation and modularisation
 - functions divided into modules with each a limited set of functions
ForcePAD 2.2 series

- Flipouts
- Many buttons
- Property panels
Solution?

- Task oriented user interface
 - Show only the tools needed for the task at hand
- To support this ForcePAD divided into 3 main modes
 - Sketch mode
 - Physics mode
 - Action mode
- Left toolbar - main tasks for the selected mode
- Right toolbar - task oriented commands
ForcePAD 2.3 series

Application modes
Sketch mode
Physics mode
Action mode

Main tasks
Task operations

Drawing area
Sketch mode

- Used to model the structure to be studied
- Modelling is done by ”Painting” with stiffness
- Available tasks
 - Select
 - Brush
 - Geometric tools
 - Flood fill
- All tasks are the same as in a conventional image editing application
Select

Selection marker
Cut
Copy
Paste
Paste from system clipboard
Brush

- Brush mode
- Erase mode
- Stiffness selection
- Brush size
Geometric tools

Rectangle tool
Circle tools
Line tool
Stiffness selector
Flood fill

Stiffness selector
Physics mode

- Defines the physical constraints of the problems
 - Forces
 - Constraints
 - Hinges (In the final 2.3.0 release)
 - Cuts (In the final 2.3.0 release)

- Tasks:
 - Forces
 - Constraints
Forces

Add forces

Erase forces

Enable self-weight
Constraints

- Add constraint
- Erase constraint
- Rotate constraint
Action mode

- Representation of the structure subjected to loads and constraints
- No "Start Calculation" button
 - Simulation is done when transitioning to action mode
 - Model must be consistent before entering action mode
- Visual representations of
 - Stress
 - Displacements
Action mode continued...

- Many parameters for the visualisation can be changed
 - Transparency, Arrow size, thickness, repeat etc.
 - Filters for compressive/tensile stress
 - Stress threshold

- Action mode provides 3 tasks
 - Principal stresses
 - Mises stresses (under development)
 - Displacements

- Applied forces can be modified in real-time.
 - This applies for all visualisation tasks
Principal stresses

- Arrow size control
- Stress arrow transparency
- Stress arrow skip control
- Stop autoscaling of result stress arrows
- Show compression and tension
- Show only tension
- Show only compression
Von Mises Stresses

“Jet” colorscale

“Hot” colorscale

Set threshold for max colorscale

Invert colorscale
Displacements
Real-time model modification
Real-time model modification
Interacting with other programs

- Most designers and architects use the sketch as the main design tool
- Software tools such as Adobe Illustrator, Photoshop are also common
- ForcePAD has the ability to import pictures from files or the clipboard
 - Scanned sketches can be used
 - Sketches in Photoshop can be imported directly
Interacting with other programs
Implementation goals

- Fast and responsive
 - Fast visualisations
 - Fast drawing
 - Fast solving
- Modern GUI
 - Hints
 - High-colored icons
 - Standard toolset
- Platform independent
 - Mac OS X, Linux and Windows
Implementation

- **Language**
 - C++

- **User interface**
 - Fast Light Toolkit (FLTK 1.1.x)
 - Available for Linux, Mac OS X and Windows
 - Very good performance on all platforms

- **Solver**
 - Implemeted using the NEWMAT11 library

- **Graphics**
 - OpenGL
 - Interface to hardware accelerated 3D and 2D
 - Fast rasterisation interface
 - Platform independent
Conclusions

- ForcePAD is an effective and easy to use educational software
- ForcePAD can be used in both engineering and design science education
- FE modeling without "geometry" definition for quick and easy modeling
- Visualisation and understanding of internal forces, part of the design process
- Task based user interface for reduced complexity
Future work

- More constraints types with intuitive user interface metaphors
- Eigenmodes
- Enable real-time constraint modification in action-mode
- Take advantage of multi-core for even more effective solvers
- Open the ForcePAD application, enabling custom application types and solvers
 - Current source available on sourceforge via subversion
Getting ForcePAD

www.byggmek.lth.se/resources/software